Sale
Massive Discounts! Up to 30% OFF on reports🎉

Space Electronics Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: May 2024 || SKU: ICT494
excelpdfpowerpoint
180 pages
Report Summary
Table of Content
List of Tables and Figures
Download Free Sample

Space Electronics Market Is Segmented By Type (Radiation-Hardened Space Electronics, Radiation-Tolerant Space Electronics), By Platform (Satellite, Launch Vehicles, Deep Space Probes) By Component (Sensor, Application Specific Integrated Circuits (ASIC), Microprocessors and Controllers, Power Source and Cables, Memory Chips, Discrete Semiconductors, others), By Application (Earth Observation, Communication, Technology Development and Equipment, Navigation, Global Positioning System (GPS) and Surveillance, Others), and By Region (North America, Latin America, Europe, Asia Pacific, Middle East, And Africa) – Share, Size, Outlook, And Opportunity Analysis, 2024-2031.

 

Space Electronics Market Overview

(210pages) A report by DataM Intelligence estimates the Global Space Electronics market to grow at a high CAGR during the forecast period 2024- 2031. The market is expected to grow because it is applicable at industries for Earth Observation, Communication, Technology Development and Equipment, Navigation, Global Positioning System (GPS) and Surveillance The competitive rivalry intensifies with Texas Instruments, Honeywell International Inc.., BAE System PLC, and others operating in the market.

Space electronics include components such as memory chips, controllers, microprocessors, application-specific integrated circuits (ASIC) and others specially designed and developed for application in rocket launchers, satellites and deep space probes. These electronic instruments are extremely accurate worldwide, with a moment accuracy of 1 part in 300,000. Various mass properties measuring equipment created by other companies use load cell technology, with an accuracy limit of 1 part in 2000. A single instrument can be manufactured that precisely measures things whose weight ranges between 100% to less than 3% of full scale due to the exceptional accuracy of space electronics instruments. 

Space technology and satellite-based applications are omnipresent. As per various reports, the value of the space economy is expected to reach US$ 1 trillion by 2040. Thus, several commercial space companies have been founded worldwide over the past decade to address the opportunities which act as a major market driver for the space electronics industry.

Space Electronics Market Scope

Metrics

Details

Market CAGR

High

Segments Covered

By Type, By Platform, By Component, By Application, and By Region.

Report Insights Covered

Competitive Landscape Analysis, Company Profile Analysis, Market Size, Share, Growth, Demand, Recent Developments, Mergers and acquisitions, New Product Launches, Growth Strategies, Revenue Analysis, and Other key insights.

Fastest Growing Region

Asia Pacific

Largest Market Share 

North America

 

To know more insights Download Sample

 

Space Electronics Market Dynamics

The growing involvement of countries in space activities has escalated the demand for space electronics. Growing technological advancements for product development in space activities are expected to drive global growth in the space electronics market.

The growing involvement of countries in space activities has escalated the demand for the space electronics

The space industry is no more the same as it was decades back. At present, not only developed countries but developing countries like India, Angola and South Africa have shown tremendous growth in boosting their space sector. For instance, the Indian space program has been well-organized from the start. It consists of three components: satellites for remote sensing and communication, a space transportation system and application programs. The Indian National Satellite (INSAT) for communications, television broadcasting and meteorological services, as well as the Indian Remote Sensing Satellite (IRS) for resource management and disaster support, have been established as major operational systems.

India has set various major milestones under the Indian Space Programme; on December 17, 2020, India’s communication satellite CMS-01 was launched successfully by PSLV-C50 from the Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. Furthermore, on February 28, 2021, India’s Polar Satellite Launch Vehicle PSLV-C51 successfully launched Amazonia-1 along with 18 co-passenger satellites.

Furthermore, in U.S., NASA has delivered the most visible elements of U.S. space portfolio. NASA fulfills the mandate for civil space exploration through crewed space exploration, the Apollo 11 moon landing, the Space Shuttle, the International Space Station, Voyager, the Mars Rovers, numerous space telescopes and the Artemis program. In U.S. government has made various investments to boost space activities. For instance, in 2021, NASA signed agreements with three big U.S. players to develop space station designs and other commercial destinations in space. The total expected award amount for all three funded Space Act Agreements is US$415.6 million.

Thus, the above-mentioned growing space activities have escalated the space electronics market and are expected to maintain the growth momentum in the forecast period.

The harsh environmental conditions of a spacecraft act as major restraints to the market growth

Space Electronics are designed to handle space's extreme conditions; however, to improve the quality of the product, the cost of manufacturing increases. Hence, companies have started using raw material substitutes to overcome the cost barrier. 

The vibration caused by the launch vehicle is space electronics' first challenge. There are high demands made on a rocket and its cargo during launch. Rocket launchers produce a lot of vibration and noise. Thousands of different things may go wrong and ignite a ball of flame. The body structure of a satellite experiences significant shocks as it separates from the rocket in space. The dynamic structural shock that results from an explosion on a structure is known as pyrotechnic shock.

Pyroshock is the structure's reaction to explosive charges, such as those employed in satellite ejection or the separation of two stages of a multistage rocket, which cause high frequency, high magnitude stress waves to propagate throughout the structure. Exposure to pyroshocks can harm circuit boards, short electrical components and other problems. However, understanding the launch environment helps one better understand the inspections, shock and vibration demands placed on electrical components for space-level applications.

COVID-19 Impact on Space Electronics Market

The COVID-19 pandemic has impacted all industries and space has seen a similar downfall. However, the impact on the space industry is different and has shown several effects on space electronics growth during the pandemic. The COVID-19 outbreak has shown effects on manufacturing, launch, downstream services and investments.

Although launches of rockets continue, ut many launch companies delayed upcoming launches. For instance, Rocket Lab has stopped launching rockets. Guiana Space Center has suspended flights, though Arianespace announced to launch from Baikonur. A new crew for the International Space Station was launched on April 9, 2020, by Soyuz MS-16 and on April 16, from the Kennedy Space Center, SpaceX will launch Starlink. China continues to launch despite the postponement of the GPS 3 satellite's scheduled launch.

Furthermore, there was the storage of semiconductors before the pandemic due to the sudden rise in consumer electronics. After the pandemic, the situation worsened due to supply chain disruption and global geopolitical crises. Industrial manufacturing was already facing tremendous challenges due to the storage of chips, creating a challenging atmosphere for space electronics to grow across the globe. 

Space Electronics Market Segmentation Analysis 

The global space electronics market is segmented by platform, type, component, application and region.

Growing demand for electronics to withstand many types of radiation damage that occur in space has resulted in demand for radiation-hardened space electronics

The global space electronics market is segmented into radiation-hardened space electronics and radiation-tolerant space electronics based on type. The radiation-hardened space electronics globally hold the highest market share of the mentioned type. Radiation-hardened or rad-hard electronics are electronic components (circuits, diodes, capacitors, transistors, resistors, etc.), sensors and single-board computer CPUs designed and produced to make them less susceptible to damage from exposure to radiation and extreme temperatures ranging from -55°C to 125°C.

They are constructed and tested to withstand many types of radiation damage occurring in space, but they carry out the same activities as non-hardened identical electronics.

Rad-hard electronics are additionally insulated in a layer of depleted boron and installed on insulating substrates rather than on traditional semiconductor wafers as part of the "hardening" process. As a result, they can tolerate much more radiation than chips of lower quality. All of these precautions are taken to avoid logical damage, such as data loss or communications and processing errors that could cause equipment to malfunction and physical damage, such as breaking or melting.

Furthermore, companies have invested in developing rad-hard electronics for space applications due to their extremely low failure rates over several years in harsh radioactive and similarly dangerous environments, which has escalated the segmental growth of the product.

Space Electronics Market Geographical Share

Growing space activities, coupled with raising government investment, have escalated the space electronics market in North America

North America holds the highest market share for space electronics. Growing space activities, rising government investment and company expansions in the region are the prime factors escalating the market growth for space electronics. 

U.S. remained the biggest spender, with its US$60 billion total space budget nearly quadruple the next largest, China. Furthermore, India and multiple European countries each increased space spending by around 30% or more in 2021, although those countries’ budgets remain under US$2 billion annually.

U.S. government spending increased by 19% and added US$107 billion to the space economy in 2021, withU.S. government and military spending US$59.6 billion alone, a 12% share of global space spending. Furthermore, various big companies have started investing in the region by launching more spacecraft. For instance, In May 2022, SpaceX became the first privately owned company to send a set of NASA astronauts to the International Space Station and become the first ever crew to launch from U.S. soil in the past decade. In 2020, the company hit the 100-launch milestone for its Falcon 9 cargo rockets and added nearly 1,000 satellites to its Starlink constellation—and the Falcon 9 that delivered its last 60 satellites was on its seventh trip, a milestone in reusable rocketry.

Space Electronics Market Companies and Competitive Landscape

The global Space Electronics market is highly competitive with local and global key players. Key players contributing to the market's growth are BAE Systems Plc, Cobham Plc, ON Semiconductor, HEICO Corporation, Microsemi Corporation, Honeywell International Inc., ST Microelectronics N.V, Texas Instruments, Teledyne e2v, TT Electronics Plc. and among others. 

The major companies are adopting several growth strategies, such as product launches, acquisitions, and collaborations, contributing to the global growth of the Space Electronics market.

  • For instance, In 2019, Space Electronics announced its acquisition by Raptor Scientific, an engineering and development company aimed at consolidating the highly fragmented Aerospace and defense-focused testing and measurement market.
  • In 2021, BAE Systems acquired a UK company that designs, builds, and operates satellites and satellite systems for in-space Missions. The acquisition aims to combine BAE Systems’ experience in highly secure satellite communications with In-Space Missions’ full lifecycle satellite capability to make a compelling sovereign UK space offer.

STMicroelectronics

Overview: The company was incorporated in 1987 as a combination of the semiconductor business of SGS Microelettronica and Thomson Semiconductors. The company designs, develop, manufactures and markets semiconductor products to sectors such as automotive, industrial, personal electronics and communications equipment, computers and peripherals. The company is listed on Euronext Paris, the New York Stock Exchange (“NYSE”) and Borsa Italiana S.p.A. The key product offering of the company includes the Automotive and Discrete Group (ADG), Microcontrollers and Digital ICs Group (MDG) and Analog, MEMS and Sensors Group (AMS).

Product Portfolio: LEO Rad-Hard ICs: ST's LEO series of rad-hard products in plastic packages offers a combination of radiation hardness, cost-effectiveness, quality assurance and delivered quantities. Specifically tailored to the needs of constellations, the LEO series benefits from dedicated processes for qualification, manufacturing, screening, quality assurance and logistics.

Key Development

  • In 2022, STMicroelectronics launched economical Radiation-Hardened ICs for Cost-Conscious ‘New Space’ Satellites.

The global space electronics market report would provide approximately 67 market data tables, 69 figures and 210 pages.

Buy this report
Single User
$4350$3480
Multiple User
$4850$3880
Enterprise User
$7850$6280
Proceed to Buy
  Get Free Sample
  Request new version
  Customize Sample
  Demo Full Report
FAQ’s

  • Increasing demand for Earth observation, communication, and navigation applications, along with rising government investments in space activities, are driving the market growth.

  • Space electronics are used in various applications, including satellites, spacecraft, launch vehicles, and ground stations. They enable functions like Earth observation, communication, navigation, and scientific research.

  • Major players include Texas Instruments, Honeywell International Inc., BAE Systems PLC, Thales Group, and Collins Aerospace.

  • Miniaturization, increased functionality, and integration are some of the key trends shaping the future of space electronics.
Related Reports
information-communication-and-technology iconinformation-communication-and-technology

Semiconductor Manufacturing Equipment Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2024 April 16

Starting from

$4350

information-communication-and-technology iconinformation-communication-and-technology

SiC power semiconductor Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2024 April 16

Starting from

$4350

information-communication-and-technology iconinformation-communication-and-technology

Asia Nanophotonics Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2024 February 27

Starting from

$3750

information-communication-and-technology iconinformation-communication-and-technology

Semiconductor Packaging Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2024 December 11

Starting from

$4350

information-communication-and-technology iconinformation-communication-and-technology

Asia Pacific Nanophotonics Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2023 September 26

Starting from

$3750

information-communication-and-technology iconinformation-communication-and-technology

Non-Glass Capacitive Sensors Market Size, Share, Industry, Forecast and outlook (2024-2031)

Published: 2024 August 06

Starting from

$4350