Medical Exoskeleton Market is Segmented By Component (Hardware, Software), By Type (Powered Exoskeleton, Passive Exoskeleton), By Extremity (Lower Body Exoskeleton, Upper Body Exoskeleton), By Application (Spinal Cord Injury, Trauma, Stroke, Cerebral Palsy, Others), By End-User (Rehabilitation Centers, Physiotherapy Centers, Others), and By Region (North America, Latin America, Europe, Asia Pacific, Middle East, and Africa) – Share, Size, Outlook, and Opportunity Analysis, 2023-2030
Medical Exoskeleton Market Overview
The Medical Exoskeleton Market report analyzes the market shares, size, recent trends, future market outlook, and competitive intelligence. The demand for medical exoskeletons is increasing due to the rising prevalence of neurological and orthopedic disorders. The market is witnessing a surge in demand from developed regions such as America and Europe. The competitive rivalry intensifies with major players such as Ekso Bionics, ReWalk Robotics, Cyberdyne, and others actively operating in the market.
Exoskeletons are used to enhance a human's physical strength by offering additional strength to limb movements. Medical exoskeletons help physically challenged persons, such as spinal cord injuries, neurological disorders, paralysis, or aged persons to enhance their quality of life.
Medical Exoskeleton Market Scope
Metrics |
Details |
Market CAGR |
48% |
Segments Covered |
By Component, By Extremity, By Application, By End-User, and By Region |
Report Insights Covered |
Competitive Landscape Analysis, Company Profile Analysis, Market Size, Share, Growth, Demand, Recent Developments, Mergers and acquisitions, New Product Launches, Growth Strategies, Revenue Analysis, and Other key insights. |
Fastest Growing Region |
Asia Pacific |
Largest Market Share |
North America |
To Get a Free Sample Click here
Medical Exoskeleton Market Dynamics and Trends
A low-cost exoskeleton manipulator with an enhanced multiple degrees of freedom sensory system is expected to drive market growth.
Rapid advancements in robotics and virtual reality necessitate more complex human-machine interfaces to achieve efficient parallel control. The exoskeleton is a wearable assistive technology that tracks multi-dimensional human motions at a high cost and extensive data processing. Alternatively, a universal and cost-effective solution to a customized exoskeleton for monitoring all of the movable joints of the human upper limbs with minimal power consumption is a triboelectric bi-directional sensor. The corresponding movements, which include two degrees of freedom (DOF) shoulder rotations, wrist-twisting, and bending motions, are identified and used to control the virtual character and robotic arm in real time. The subsequent kinetic analysis delivers additional physical parameters without introducing other sensors due to the structural consistency between the exoskeleton and the human body. This exoskeleton sensory system has a lot of promise as a low-cost, high-tech human-machine interface for manipulating objects in the real and virtual worlds, such as robotic automation, healthcare, and training. Thus, the market is expected to drive in the forecast period from the above statements.
Restraint:
The Limited Power Range of exoskeletons, regulatory challenges for securing approvals for exoskeletons' medical applications, and the high cost associated with Medical exoskeletons are some of the factors that the market is expected to get hampered in the forecast period. For instance, many people cannot afford an exoskeleton since they cost roughly $45,000.
Industry Analysis
The medical exoskeleton market provides an in-depth analysis of the market based on various industry factors such as unmet needs, pricing analysis, supply chain analysis, regulatory analysis, etc.
COVID-19 Impact on Medical Exoskeleton Market Growth
The COVID-19 pandemic had a positive impact on the market. The pandemic has put a strain on healthcare systems around the world like never before, with severe implications for clinical management, including rationing of care and the inability of Intensive Care Units (ICUs) to safely maintain a high number of patients on mechanical ventilation during the surge due to a lack of capacity and resources. Prone positioning (PP), or repositioning a patient from a supine to a prone position (i.e., on their front side), has been shown to enhance oxygenation and ventilatory mechanics in Acute Respiratory Distress Syndrome (ARDS) patients who require mechanical ventilatory assistance. As a result, during the COVID-19 pandemic, PP was widely employed. For instance, in the first ten days of the outbreak, the ICU at Nancy Hospital did 116 PP maneuvers, similar to the number of maneuvers they regularly perform in a year. Using exoskeletons to aid medical professionals during prone positioning of mechanically ventilated COVID-19 patients. Although putting a patient into a prone position is not an invasive process, it is complicated.
Moreover, there has been increasing interest in employing exoskeletons for workplace ergonomics to reduce physical workload and the risks of developing musculoskeletal disorders. Exoskeletons can be active (motorized) or passive, in which case mechanical elements such as springs store and restore energy, transferring the load from one body part to another. Thus, this is owing to boost the medical exoskeleton market in the forecast period.
Medical Exoskeleton Market Segment Analysis
The passive Exoskeleton segment is expected to hold the largest market share in the medical exoskeleton market
The passive exoskeleton segment accounted for the largest market share in 2021. The segment is benefited because Passive exoskeletons are typically cheaper and lighter than active devices (e.g., Collins et al.'s ankle exoskeleton is 400 g, thereby, the combination of powered and passive exoskeleton characteristics in a new class of pseudo-passive (or semi-active) devices may provide a promising future direction for exoskeleton technology. For instance, EVO is an upper-body lifting exoskeleton designed to increase productivity and reduce fatigue, intending to eliminate work-related injuries to the neck, shoulder, and back. Building upon the industry's first industrial vest, EksoVest, EVO is the world's most lightweight, durable, assistive, and naturally tracking industrial exoskeleton of its kind. Moreover, Passive devices can only offer fixed mechanical properties that are at best only switchable between locomotion bouts such as running on a track or hiking downhill at a fixed speed. Thus, the market segment is expected to hold the largest market share in the forecast period from the above statements.
Medical Exoskeleton Market Geographical Share
North America region holds the largest market share in the global medical exoskeleton market
North America accounted for the largest market share in 2021. The increasing prevalence of stroke, a growing number of spinal cord injuries (SCI), a rising geriatric population, launches of new products, and approvals by leading market players in the region are some factors that the market is expected to boost during the forecast period. For instance, injuries can occur in any sport, whether from the trauma of contact with other players or from overuse or misuse of a body part. According to the National Safety Council (NSC), in 2020, bicycling accounted for about 426,000 injuries, most of any sports and recreation category. With or without equipment, exercise followed with about 378,000 injuries, while ATV, moped, and minibike use with 230,000 injuries, and skateboard, scooter, and hoverboard use, with 218, 00 injuries, ranked third and fourth.
Moreover, the concern is growing about the risks of sports-related concussions such as football can be expected to result in a higher number of injuries than in a noncontact sport such as swimming. Additionally, The US Food and Drug Administration (FDA) granted Ekso Bionics 501(k) permission in 2020 to commercialize their EksoNR robotic exoskeleton for patients with acquired brain damage (ABI). EksoNR is the first exoskeleton device to be cleared by the FDA for rehabilitation use with ABI, broadening the device's use to a far larger range of patients. Thus, the North American region is expected to hold the largest market share in the forecast period from the above statements.
Medical Exoskeleton Market Companies
Major key players in the medical exoskeleton market are Ekso Bionics Holdings, Inc., ReWalk Robotics Ltd., Exoskeleton Report LLC, Parker Hannifin Corp, CYBERDYNE Inc., Bionik Laboratories Corp, Gogoa Mobility Robots, Hocoma AG, Wearable Robotics SRL, and B-TEMIA Inc.
Hocoma AG:
Overview:
Hocoma is the global industry leader in robotic and sensor-based devices for the development, production, and marketing of functional movement therapy. The electrical and biomedical engineers Gery Colombo and Matthias Jörg, as well as the economist Peter Hostettler, formed the Swiss medical technology firm in 1996 as a limited liability corporation. Hocoma creates cutting-edge therapy solutions in collaboration with top clinics and research institutions. Hocoma employs about 160 people at its headquarters near Zurich and its subsidiaries in the United States, Singapore, and Slovenia. They are a genuinely global organization, with employees from 25 different nations. 35 percent of the personnel at Hocoma's headquarters in Switzerland are international citizens, which adds to the company's diversity.
Product Portfolio:
ArmeoPower: The ArmeoPower has been specifically designed for arm and hand therapy in an early rehabilitation stage. The device enables even patients with severe movement impairments to perform exercises with high repetitions (high intensity), which is paramount for relearning motor function.
The global medical exoskeleton market report would provide an access to approx. 45+market data table, 40+figures and 180pages.